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Abstract – The work presents and thoroughly investigates an intelligent single-path routing model based on OSPF protocol metrics and deep learning. 

The proposed intelligent model is based on a mathematical formalization of the problem in the form of Boolean programming, ensuring the implemen-

tation of strictly single-path routing without flow branching. The model is based on a multilayer perceptron (MLP) architecture. The integration of 

neural network predictive capabilities directly into the path-selection process enables dynamic optimization of interface costs. An experimental study 

was conducted on a topology with five nodes and six communication links. The work provides a comparative analysis of MLP regression and classifi-

cation models across bandwidth ranges: 10 Mbit/s – 400 Gbit/s, 1 – 400 Gbit/s, and 1 – 100 Gbit/s. It was found that MLP forecasting accuracy reaches 

99–100% when using the “optimal” data set, but decreases significantly with excessive variability in input parameters. An important aspect of the 

study is the comparison of software implementation environments. It has been found that using Python (TensorFlow and PyTorch) provides 5–10% 

higher prediction accuracy than MATLAB, which is explained by the specialization of Python libraries for network analytics tasks. The conclusions of 

the work justify the “accuracy limit” of MLPs due to the neglect of the network graph`s topological structure and point to the promising transition to 

graph neural networks (GNNs) for large systems. At the same time, it is emphasized that, due to its low computational complexity, MLP remains the 

optimal choice for local solutions and routers with limited resources, where microsecond-level decision-making speed is critical. 

 

Анотація – У роботі представлено та детально досліджено інтелектуальну модель одношляхової маршрутизації, що базується на вико-

ристанні метрик протоколу OSPF і технологій глибокого навчання. Запропонована інтелектуальна модель базується на математичній 

формалізації задачі у формі булевого програмування, що забезпечує реалізацію суворо одношляхової маршрутизації без розгалуження потоків. 

Основу моделі становить архітектура багатошарового персептрона (Multilayer Perceptron, MLP). Інтеграція предиктивних можливостей 

нейронних мереж безпосередньо у процес вибору шляху дозволяє здійснювати динамічну оптимізацію вартості інтерфейсів. Експеримен-

тальне дослідження проведено на топології з п'яти вузлів та шести каналів зв'язку. В роботі виконано порівняльний аналіз регресійних і 

класифікаційних моделей MLP при різних діапазонах пропускної здатності: 10 Мбіт/с – 400 Гбіт/с, 1 – 400 Гбіт/с та 1 – 100 Гбіт/с. 

Встановлено, що точність прогнозування MLP сягає 99–100% за умови використання «оптимального» ряду даних, проте суттєво знижу-

ється при надмірній варіативності вхідних параметрів. Важливим аспектом дослідження є порівняння програмних середовищ реалізації. 

Виявлено, що використання Python (TensorFlow та PyTorch) забезпечує на 5–10% вищу точність прогнозування порівняно з MATLAB, що 

пояснюється спеціалізацією бібліотек Python під задачі мережної аналітики. У висновках роботи обґрунтовано «межу точності» MLP 

через ігнорування топологічної структури графа мережі та вказано на перспективність переходу до графових нейронних мереж (Graph 

Neural Networks, GNN) для великих систем. Водночас підкреслено, що завдяки низькій обчислювальній складності MLP залишається оп-

тимальним вибором для локальних рішень та маршрутизаторів з обмеженими ресурсами, де критичною є швидкість прийняття рішень 

у мікросекундному діапазоні.

 

Вступ 

Сучасні інфокомунікаційні мережі характеризуються високою динамікою, скла-

дною топологією та постійно зростаючими вимогами до швидкості й надійності пе-

редачі даних, зумовленими розвитком технологій 5G, IoT та хмарних обчислень. Ефе-

ктивне управління потоками трафіку є ключовим для забезпечення якості обслугову-

вання (QoS), проте традиційні протоколи маршрутизації, зокрема OSPF (Open 

Shortest Path First), часто виявляються малоефективними через свою нездатність шви-

дко адаптуватися до змін у реальному часі [1, 2]. 

http://pt.nure.ua/37
http://pt.nure.ua/
https://pt.nure.ua/authors/sitnikov-r-s/
https://pt.nure.ua/authors/andrushko/
https://pt.nure.ua/authors/sitnikov-r-s/
https://pt.nure.ua/authors/andrushko/


Електронне  наукове  фахове  видання  –   

журнал  «Проблеми телекомунікацій» 
• № 2 (37) • 2025 • http://pt.nure.ua 

 

 

Р.С. Ситніков, Д.В. Андрушко <  4  > 
 

Стандартний протокол OSPF базується на алгоритмі Дейкстри та використовує 

фіксовані метрики, що описують пропускну здатність інтерфейсів для вибору найко-

ротшого шляху. Такий детермінований підхід ігнорує контекстні особливості трафіку 

та динамічні чинники (затримки, джитер, поточну завантаженість каналів та стабіль-

ність ліній), що призводить до виникнення «вузьких місць» і неефективного викорис-

тання ресурсів при пікових навантаженнях. В умовах високої мобільності вузлів або 

раптових сплесків трафіку традиційні алгоритми не забезпечують необхідної гнучко-

сті, що спричиняє значне зниження загальної продуктивності мережі [1, 3, 4]. 

Впровадження концепції програмно-конфігурованих мереж (SDN) стало ключо-

вим етапом у розвитку інфраструктури майбутнього, оскільки ця архітектура базується 

на відділенні рівня управління (Control Plane) від рівня передачі даних (Data Plane). Така 

декомпозиція дозволяє передати інтелектуальні функції від окремих вузлів до центра-

лізованого контролера, який має глобальне бачення топології та здатність гнучко про-

грамувати таблиці маршрутизації через відкриті API. SDN-архітектура забезпечує фу-

ндамент для автоматизації управління ресурсами та впровадження проактивних стра-

тегій захисту мережі, що є критичним для забезпечення високого рівня відмовостійко-

сті та кіберстійкості в умовах динамічних навантажень [5 - 7]. 

Особливе місце в сучасних SDN-рішеннях посідає інтеграція нейромережних мо-

делей, які замінюють статичні евристики адаптивними механізмами прийняття рі-

шень. Використання методів глибокого навчання дає змогу ефективно вирішувати за-

дачі балансування навантаження та інжинірингу трафіку (Traffic Engineering), орієн-

туючись на реальний стан мережі замість фіксованих розрахунків [4, 8]. Поєднання 

предиктивних можливостей нейронних мереж із гнучкістю SDN дозволяє створювати 

самонавчальні системи, здатні мінімізувати затримки та запобігати перевантаженням 

ще до їхнього виникнення, що значно підвищує масштабованість та ефективність ін-

фокомунікаційних мереж [8, 9]. 

Перспективним напрямком досліджень є перехід до інтелектуальних моделей 

маршрутизації, що базуються на методах штучного інтелекту, зокрема глибокого на-

вчання (Deep Learning) [4, 10]. Важливе місце в таких дослідженнях посідає викорис-

тання багатошарового персептрона MLP (Multilayer Perceptron) як інструменту для 

аналізу історичних даних та прогнозування стану мережі. Зокрема, досліди показу-

ють, що навіть моделі структури «4-1-16-1» здатні з високою точністю (MAPE менше 

10%) прогнозувати затримки на маршрутизаторах, що дозволяє оптимізувати вибір 

шляху на основі реального стану інфраструктури [11]. 

Інтеграція методів штучного інтелекту безпосередньо в процес вибору шляху 

OSPF дозволяє реалізувати динамічну оптимізацію вартості інтерфейсів. Це забезпе-

чує проактивне перенаправлення потоків до виникнення перевантажень, що, за ре-

зультатами моделювання, підвищує пропускну здатність та покращує затримку при-

близно на 30% [3]. Дана стаття присвячена дослідженню інтелектуальної моделі одно-

шляхової маршрутизації, яка трансформує статичний вибір шляху на основі метрик 

OSPF в адаптивну систему, здатну до самонавчання та ефективного балансування на-

вантаження в динамічних умовах. 
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І. Огляд досліджень моделей інтелектуальної маршрутизації 

Традиційний протокол OSPF базується на статичних метриках пропускної здат-

ності, що обмежує його адаптивність до динамічних змін трафіку та затримок у реа-

льному часі. Впровадження інтелектуальних моделей на основі багатошарового пер-

септрона та інших методів глибокого навчання дозволяє трансформувати процес ма-

ршрутизації у проактивний завдяки точному прогнозуванню стану мережі. Предста-

влений аналіз розглядає перехід від класичних евристичних алгоритмів до нейроме-

режних архітектур, які забезпечують суттєве підвищення продуктивності та надійно-

сті сучасних інфокомунікаційних мереж. 

У відомих дослідженнях інших авторів [11] було розглянуто фундаментальні об-

меження протоколу OSPF та детально досліджено використання багатошарового пе-

рсептрона для вирішення проблеми прогнозування затримок на маршрутизаторах. В 

роботі було проведено порівняльне дослідження цієї ж архітектури MLP («4-1-16-1») 

із нейронечіткою мережею (ANFIS) для потреб залізничного транспорту. Було зроб-

лено висновки, що MLP, навчений за алгоритмом Левенберга-Марквардта, забезпечує 

високу точність прогнозування (середня похибка MAPE становить 1,94%), що дозволяє 

OSPF ефективно функціонувати в умовах постійної зміни обсягів трафіку. 

В результаті дослідження [10] можливості заміни складної евристики глибокими 

нейронними мережами (DNN), які за своєю структурою є розвиненими багатошаро-

вими персептронами (MLP), було зроблено висновок, що модель, навчена на оптима-

льних рішеннях математичного програмування (MILP), здатна генерувати маршрути 

в реальному часі з відхиленням від ідеалу лише на 1%. При цьому одна модель може 

обслуговувати всі пари вузлів-джерел та вузлів-призначень в мережі. 

У сучасних публікаціях [3] було досліджено інтеграцію MLP разом із моделями 

XGBoost, Random Forest та LSTM безпосередньо у процес прийняття рішень OSPF. 

Було зроблено висновки, що використання ШІ для динамічного призначення вартості 

інтерфейсів дозволяє покращити пропускну здатність мережі на 30% порівняно зі ста-

ндартними налаштуваннями. 

На основі проведеного дослідження [1] алгоритму Q-learning як альтернативи 

статичному алгоритму Дейкстри було зроблено висновки, що агент підкріплюваль-

ного навчання RL дозволяє зменшити середню затримку передачі пакетів на 15% та 

забезпечити більш збалансований розподіл навантаження між вузлами розподіленої 

мережі. А у роботі [5] було досліджено гібридний підхід, що поєднує генетичні алго-

ритми та нейронні мережі Хопфілда. Було зроблено висновок, що такі еволюційні ме-

тоди здатні знаходити оптимальні рішення менш ніж за 5 секунд, що є критично ва-

жливим для динамічних систем, де швидкість збіжності OSPF є недостатньою. 

У відомих працях [2, 7, 12] було досліджено перехід від класичних MLP до графо-

вих нейронних мереж (Graph Neural Networks, GNN), які здатні безпосередньо обро-

бляти топологічну структуру мережі. Так, у роботі [12] було досліджено архітектуру 

GENConv, де MLP використовується лише як фінальний декодер для класифікації ре-
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бер графа. Було зроблено висновки, що такий підхід забезпечує успішну побудову ма-

ршрутів у 94% випадків навіть на топологіях, які не були представлені під час навчання 

моделі. А за результатами дослідження [2] алгоритму GNN-DRL, який поєднує стру-

ктурну обізнаність GNN із гнучкістю навчання з підкріпленням, було зроблено висно-

вок, що цей підхід знижує максимальну завантаженість каналів на 13,92% та затримку 

на 9,48% порівняно з існуючими інтелектуальними системами. 

Попередні дослідження демонструють, що застосування нейронних мереж забез-

печує еволюцію OSPF від статичного алгоритму до інтелектуальної системи управ-

ління навантаженням. Архітектура MLP залишається базовим і надійним інструмен-

том для прогнозування затримок та оптимізації вартості шляхів завдяки простоті 

впровадження та низькій похибці. Водночас, розвиток GNN відкриває шлях до ство-

рення універсальних моделей маршрутизації, здатних до миттєвого узагальнення 

знань на нові, раніше невідомі конфігурації мереж, що є ключовим фактором для ро-

звитку інфраструктури 5G та Інтернету речей [2, 12].   

ІІ. Математичний опис задачі маршрутизації за метрикою OSPF 

Загалом протокол OSPF виконує пошук найкоротшого шляху за допомогою ал-

горитму Дейкстри, але при дослідженні задачу одношляхової маршрутизації з мет-

рикою протоколу OSPF було розв’язано у формі задачі булевого програмування. Кі-

лькість каналів зв’язку в мережі (𝑛) визначає розмірність вектора 𝑥⃗, координати 𝑥𝑖,𝑗 

якого характеризують долю потоку в каналі зв’язку між 𝑖 -м та 𝑗 -м вузлами. Розмір-

ність вектора метрик 𝑓 також відповідає числу каналів зв’язку в мережі (𝑛), координати 

𝑓𝑖,𝑗 якого характеризують метрику каналу зв’язку між 𝑖 -м та 𝑗 -м вузлами.  

Для реалізації одношляхової маршрутизації на координати вектору 𝑥 наклада-

ються наступні обмеження:  

 

                                                     𝑥𝑖,𝑗 ∈ {0,1}   (𝑖, 𝑗 = 1,𝑚; 𝑖 ≠ 𝑗),                                                  (1) 

 

де 𝑚 – кількість вузлів (маршрутизаторів) у мережі. 

Тобто змінні 𝑥𝑖,𝑗 можуть приймати лише два значення:  

 

𝑥𝑖,𝑗 = {
1, якщо потік використовує канал (𝑖, 𝑗);

0, в іншому випадку.
 

 

Булевий зміст змінних (1) гарантує відсутність розгалуження потоку за шляхами 

мережі, тобто всі пакети потоку будуть передаватися одним шляхом.  

Кожному каналу зв’язку буде присвоюватися метрика, що відповідає знахо-

дженню шляху між заданою парою вузлів з мінімальною вартістю (𝑓𝑣𝑎𝑙) за аналогією 

з властивостями протоколу OSPF:  

 

                                            𝑓𝑖,𝑗 = 𝑏𝑤/𝑐𝑖,𝑗;  𝑖, 𝑗 = 1,𝑚; 𝑖 ≠ 𝑗,                                           (2) 
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де 𝑏𝑤 – константа, що відповідає значенню максимальної пропускної здатності каналу 

мережі (для OSPF за замовчуванням 108); 𝑐𝑖,𝑗 – номінальна пропускна здатність (ПЗ) 

каналу зв’язку між 𝑖 -м та 𝑗 -м вузлами. 

У ході розв’язання маршрутної задачі необхідно забезпечити виконання умови 

збереження потоку в кожному з мережних вузлів та в мережі в цілому: 

 

                                {

∑ 𝑥𝑖,𝑗𝑗:(𝑖,𝑗) − ∑ 𝑥𝑗,𝑖𝑗:(𝑗,𝑖) = 1 − для вузла-відправника;

∑ 𝑥𝑖,𝑗𝑗:(𝑖,𝑗) − ∑ 𝑥𝑗,𝑖𝑗:(𝑗,𝑖) = 0 − для транзитних вузлів;

∑ 𝑥𝑖,𝑗𝑗:(𝑖,𝑗) − ∑ 𝑥𝑗,𝑖𝑗:(𝑗,𝑖) = −1 − для вузла-одержувача.

                             (3) 

 

Задача пошуку найкоротшого шляху в мережі може формалізуватися як задача 

булевого програмування, для розв’язання якої може використовуватися інструмента-

рій «Optimization Toolbox» середовища MATLAB, представлений підпрограмою 

«intlinprog» або аналогічний пакет «scipy.io» Python (підпрограма «linprog»). 

У ході розв’язання задач змішаного цілочисельного лінійного програмування не-

обхідно мінімізувати цільову функцію, представлену лінійною формою 

 

𝑚𝑖𝑛
𝑥
𝑓𝑡𝑥⃗, 

 

при виконанні ряду умов, які представлені у вигляді обмежень рівнянь і нерівностей 

 

𝐴 ⋅ 𝑥⃗ ≤ 𝑏⃗⃗; 𝐴𝑒𝑞 ⋅ 𝑥⃗ = 𝑏⃗⃗𝑒𝑞 і 𝑙𝑏⃗⃗⃗⃗ ≤ 𝑥 ≤ 𝑢𝑏⃗⃗ ⃗⃗⃗, 

 

де 𝑓, 𝑥⃗, 𝑏⃗⃗, 𝑏⃗⃗𝑒𝑞 – вектори, 𝐴 і 𝐴𝑒𝑞 –  матриці відповідної розмірності; 𝑙𝑏 і 𝑢𝑏 – вектори-сто-

вбці розміру 𝑛. 

Для опису задачі маршрутизації в формалізмах середовища MATLAB або Python 

умови збереження потоку (3) необхідно представити у векторно-матричній формі 

𝐴𝑒𝑞 ⋅ 𝑥⃗ = 𝑏⃗⃗𝑒𝑞. У такий спосіб матриця 𝐴𝑒𝑞 має розмірність 𝑚 × 𝑛, координати якої прий-

мають числові значення {−1; 0; 1} у такий спосіб (𝑗 = 1,𝑚, 𝑖 = 1, 𝑛):  

𝑎𝑗𝑖 = 1, якщо 𝑖 -й канал зв’язку виходить із 𝑗 -го вузла;  

𝑎𝑗𝑖 = −1, якщо 𝑖 -й канал зв’язку входить у 𝑗 -й вузол;  

𝑎𝑗𝑖 = 0, якщо 𝑖 -й канал зв’язку не є інцидентним 𝑗 -му вузлу.  

Розмірність вектора 𝑏𝑒𝑞 відповідає числу вузлів у мережі (𝑚), а його координати 

формується в такий спосіб (𝑗 = 1,𝑚):  

𝑏𝑒𝑞𝑗 = 1, якщо 𝑗 -й вузол є вузлом-відправником пакетів;  

𝑏𝑒𝑞𝑗 = −1, якщо 𝑗 -й вузол є вузлом-одержувачем пакетів; 

𝑏𝑒𝑞𝑗 = 0, якщо 𝑗 -й вузол є транзитним вузлом.  

У випадку, коли умов у вигляді нерівностей немає, то 𝐴 = [] та 𝑏 = []. 
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Дослідження інтелектуальної моделі одношляхової маршрутизації на основі ме-

трик OSPF відбувалося на прикладі мережної топології й пропускної здатності її ка-

налів зв’язку, наведеної на рис. 1. Тоді загальне число вузлів у мережі дорівнює п'яти 

(𝑚 = 5), а число каналів зв’язку – шести (𝑛 = 6). Нехай також вузол-відправник пакетів 

– вузол 1, а вузол-одержувач – вузол 5. 

 

1

2

3 4

5

4,5
c

3,4
c

1,3
c

2,3
c

2,5
c

1,2
c

 
Рис. 1. Топологія досліджуваної мережі 

 

Формуємо шуканий вектор 𝑥⃗. Нехай у рамках моделі, що представлена виразами 

(1)-(3), він має вигляд: 

                                                                                    𝑥⃗ =

[
 
 
 
 
 
 
𝑥1,2
𝑥1,3
𝑥2,3
𝑥2,5
𝑥3,4
𝑥4,5]

 
 
 
 
 
 

.                                                                                  (4) 

Відповідно до метрики протоколу OSPF вектор вагових коефіцієнтів 𝑓  для прик-

ладу (4) матиме вигляд: 

 

                                                                        𝑓 =

[
 
 
 
 
 
 
𝑓1,2
𝑓1,3
𝑓2,3
𝑓2,5
𝑓3,4
𝑓4,5]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑏𝑤/𝑐1,2
𝑏𝑤/𝑐1,3
𝑏𝑤/𝑐2,3
𝑏𝑤/𝑐2,5
𝑏𝑤/𝑐3,4
𝑏𝑤/𝑐4,5]

 
 
 
 
 
 

.                                                                    (5) 

 

Формалізуємо умови збереження потоку у вузлах мережі (2): 
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{
 
 

 
 
𝑥1,2 + 𝑥1,3 = 1;

−𝑥1,2 + 𝑥2,3 + 𝑥2,5 = 0;

−𝑥1,3 − 𝑥2,3 + 𝑥3,4 = 0;

−𝑥3,4 + 𝑥4,5 = 0;

−𝑥2,5 − 𝑥4,5 = −1.

                                                                 (6) 

 

Тоді згідно з системою (6) формуємо матрицю 𝐴𝑒𝑞 і вектор 𝑏⃗⃗𝑒𝑞: 

 

                            𝐴𝑒𝑞 =

[
 
 
 
 
1 1 0 0 0 0
−1 0 1 1 0 0
0 −1 −1 0 1 0
0 0 0 0 −1 1
0 0 0 −1 0 −1]

 
 
 
 

;       𝑏⃗⃗𝑒𝑞 =

[
 
 
 
 
1
0
0
0
−1]
 
 
 
 

.                                          (7) 

У векторно-матричному поданні система нерівностей буде мати вигляд 𝐴 ⋅ 𝑥⃗ ≤ 𝑏⃗⃗ , де 

                                                                          𝐴 = [];       𝑏⃗⃗ = [].                                                                        (8) 

Оскільки всі координати вектора 𝑥⃗ є булевими (1), то   

 

                                                                     𝑙𝑏⃗⃗⃗⃗ =

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

     та  𝑢𝑏⃗⃗ ⃗⃗⃗ =

[
 
 
 
 
 
1
1
1
1
1
1]
 
 
 
 
 

.                                                                        (9) 

ІІI. Експериментальне дослідження задачі інтелектуальної                                   
маршрутизації за метрикою OSPF 

Генерація навчальних та тестових даних 

 

Експериментальне дослідження задачі інтелектуальної маршрутизації за метри-

кою OSPF складалося з трьох послідовних етапів: 

− генерація навчальних (10000 комбінацій) та тестових (1000 комбінацій) даних; 

− навчання та тренування нейронної мережі з багатошарових перцептронів MLP; 

− тестування нейронної мережі та аналіз результатів експериментів. 

Генерацію навчальних та тестових даних було зроблено у середовищі MATLAB 

за допомогою підпрограми intlinprog окремо для моделей регресії та класифікації. 

При генерації як вихідні дані було використано випадкові вектори пропускних здат-

ностей каналів зв’язку 𝑐𝑖,𝑗. Було розглянуто три варіанти вхідних даних мережі: 

1) «Повний» ряд стандартних пропускних здатностей 10 Мбіт/с – 100 Мбіт/с – 

1 Гбіт/с – 10 Гбіт/с – 40 Гбіт/с – 100 Гбіт/с – 400 Гбіт/с. 

2) «Максимальний» ряд (1 Гбіт/с – 400 Гбіт/с). 

3) «Оптимальний» рекомендований ряд (1 Гбіт/с – 100 Гбіт/с). 
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Оскільки за замовчуванням при розрахунку метрики OSPF використовується ко-

ефіцієнт 108 (біт/с), то при для сучасних високошвидкісних каналів зв’язку від 

1000 Мбіт/с спостерігається некоректна ситуація, коли метрика дорівнює 1 для всіх ка-

налів зі швидкістю від 100 Мбіт/с та більше. Тому адміністраторам рекомендується на 

всіх маршрутизаторах мережі (area) вручну встановлювати такий коефіцієнт для об-

числення метрики OSPF, що дорівнює максимальної пропускної здатності каналу 

зв’язку мережі (area). При генерації наборів даних для розрахунку метрик OSPF як ко-

ефіцієнт (базової пропускної здатності, 𝑏𝑤) було використано максимальні пропускні 

здатності каналів (100 Гбіт/с та 400 Гбіт/с відповідно). 

Як видно з топології мережі рис. 1, для одношляхової маршрутизації доступні 

тільки 3 шляхи:  

− 1 – 2 – 5: вектор шляху 𝑥𝑡⃗⃗⃗⃗⃗ = [0 1 0 0 1 1] – номер комбінації 1;  

− 1 – 3 – 4 – 5: вектор шляху 𝑥𝑡⃗⃗⃗⃗⃗ = [1 0 0 1 0 0] – номер комбінації 2; 

− 1 – 2 – 3 – 4 – 5:  вектор шляху 𝑥𝑡⃗⃗⃗⃗⃗ = [1 0 1 0 1 1] – номер комбінації 3.  

Як видно з рис. 2 та рис. 3, де наведено статистику згенерованих навчальних та 

тестових комбінацій, варіанти рішень оптимізаційної задачі при випадковій генерації 

пропускних здатностей каналів мають різну частку (28%-70%-2%), тобто імовірність 

появи після розрахунку різних варіантів рішень суттєво відрізняється. 

 

 

а) навчальні дані 

 

 б) тестові дані  

Рис. 2. Розподіл комбінацій даних для регресійної моделі  
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а) навчальні дані                                                             

 

б) тестові дані 

Рис. 3. Розподіл комбінацій даних для класифікаційної моделі  

 

Для дослідження було обрано нейронну мережу MLP – багатошаровий перцеп-

трон, що є  класичною нейронною мережею прямого поширення. Мережа працює з 

векторами і таблицями та припускає, що кожен вхідний приклад є незалежним. Ар-

хітектура складається з послідовних повнозв'язних (Dense) шарів, де кожен нейрон од-

ного шару з'єднаний з усіма нейронами наступного. За умови зміни вхідних даних 

MLP доведеться перенавчати. MLP представлена у середовищі MATLAB через Deep 

Learning Toolbox та вбудовані безпосередньо в базові класи tf.keras.layers.Dense 

(TensorFlow) або torch.nn.Linear (PyTorch). На рис. 4 наведено структури MLP, що ви-

користовувалися при моделюванні. 

Як видно з рис. 4, структури нейронної мережі обох моделей прості та відрізня-

ється тільки вихідним шаром: якщо класифікатор обирає одну з 3 категорій (4 катего-

рія відсутня у навчальних та тестових наборах), то регресія намагається точно вираху-

вати 6 числових значень (вектор шляху). Вони складаються з: 

− вхідного шару: 6 нейронів (пропускна здатність каналів); 

− шару 1 (Dense): 64 нейрони + ReLU; 

− шару 2 (Dense): 32 нейрони + ReLU; 

− вихідного шару: 6 нейронів із функцією активації linear/ 4 нейрона із функ-

цією softmax (ймовірності класів). 
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                а) модель регресії                     б) модель класифікації 

Рис. 4. Структури нейронної мережі  

 

Тестування регресійної моделі нейронної мережі при розв’язанні задачі                  

маршрутизації за метрикою OSPF 

 

На рис. 5 – рис. 10 наведено діаграми за результатами тестування регресійної мо-

делі нейронної мережі при розв’язанні задачі маршрутизації за метрикою OSPF з ви-

користанням трьох варіантів вхідних даних: точність прогнозу та середня помилка по 

комбінаціях виходів. Діаграма «Середня помилка по комбінаціях виходів» (рис. 5 – 

рис. 7) характеризує ступінь невизначеності моделі – це середнє арифметичне абсо-

лютних відхилень прогнозних значень мережі від цільових значень (0 або 1) у межах 

певної групи тестових векторів. Вона відображає середню відстань між неперервним 

виходом нейромережі та бінарним еталоном до моменту округлення та характеризує 

ступінь невизначеності моделі. Якщо середня помилка наближається до 50%, це свід-

чить про те, що для даної комбінації модель генерує значення на межі прийняття рі-

шення, що призводить до високої ймовірності помилкового округлення. В залежності 

від середньої помилки прогнозний стан моделі можна класифікувати як: 

− зона високої точності (0% – 10%): модель «впевнена», значення на виході бли-

зькі до цілих чисел (наприклад, 0,05 або 0,92), ймовірність помилки буде близькою до 

нуля; 

− зона допустимих відхилень (10% – 25%): модель має певні сумніви, але все 

ще тримається правильного «боку» від порогу 0,5, точність залишається високою, але 

з'являються поодинокі випадки помилкового округлення; 

− зона невизначеності (25% – 40%): «слабке передбачення», виходи часто пот-

рапляють у діапазон 0,3–0,7, ймовірність помилки різко зростає;  
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− критична зона (40% – 50% і вище): модель видає значення, близькі до 0,5, або 

взагалі помилкові значення (видає 1 там, де має бути 0), модель не справляється з цією 

комбінацією. 

 

 

[010011] [100100] [101011]

Комбінації виходів  
а) нейромережа MATLAB 

 

 

[010011] [100100] [101011]
Комбінації виходів  

б) нейромережа Python 

Рис. 5. Середня помилка по комбінаціях регресійної моделі (10 Мбіт/с – 400 Гбіт/с)  
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[010011] [100100] [101011]

Комбінації виходів  

а) нейромережа MATLAB 

[010011] [100100] [101011]
Комбінації виходів  

б) нейромережа Python 

Рис. 6. Середня помилка по комбінаціях регресійної моделі (1 Гбіт/с – 400 Гбіт/с)  
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[010011] [100100] [101011]

Комбінації виходів  

а) нейромережа MATLAB 

[010011] [100100] [101011]
Комбінації виходів  

б) нейромережа Python 

Рис. 7. Середня помилка по комбінаціях регресійної моделі (1 Гбіт/с – 100 Гбіт/с)  

 

Діаграма «Точність прогнозу по комбінаціях виходів» (рис. 8 – рис. 10) показує, 

наскільки надійно нейронна мережа відтворює конкретні топологічні рішення, тобто 

це точність відтворення вектору шляху з 6 каналів зв’язку (обернена величина до ймо-

вірності помилки прогнозу). Помилка лише одного каналу зв’язку призводить до сут-

тєвого зниження загальної точності відтворення шляху, оскільки вектор шляху втра-

чає узгодженість із реальною топологією. При цьому навіть незначні відхилення у 

прогнозі можуть спричинити вибір неефективного шляху, що збільшує затримку та 

знижує пропускну здатність мережі. 
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[010011] [100100] [101011]

Комбінації виходів  
а) нейромережа MATLAB 

 

[010011] [100100] [101011]

Комбінації виходів  
б) нейромережа Python 

 

Рис. 8. Точність прогнозу по комбінаціях регресійної моделі (10 Мбіт/с – 400 Гбіт/с)  
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[010011] [100100] [101011]
Комбінації виходів  

а) нейромережа MATLAB 

[010011] [100100] [101011]

Комбінації виходів  

б) нейромережа Python 

 

Рис. 9. Точність прогнозу по комбінаціях регресійної моделі (1 Гбіт/с – 400 Гбіт/с)  
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[010011] [100100] [101011]
Комбінації виходів   

а) нейромережа Matlab 

[010011] [100100] [101011]

Комбінації виходів   

б) нейромережа Python 

Рис. 10. Точність прогнозу по комбінаціях регресійної моделі (1 Гбіт/с – 100 Гбіт/с)  

 

Як видно з рис. 5 – рис. 10, регресійна модель загалом спроможна розв’язувати 

задачу одношляхової маршрутизації, але результат сильно залежить від рівномірності 

комбінацій вхідних даних: найнижча точність прогнозу (найбільша ймовірність поми-

лки) спостерігалася для найменш ймовірної комбінації у наборі вхідних даних. 

Також спостерігається явна залежність точності прогнозу від набору навчальних 

та тестових даних (ряду ПЗ каналів зв’язку): найкращі результати було досягнуто при 

використанні «оптимального» ряду (1 Гбіт/с – 100 Гбіт/с), коли пропускні здатності ка-

налів відрізняються не більш, ніж на 2 порядки. У такому випадку досягається висока 

точність прогнозів (до 100%), модель «впевнена» та знаходиться у зоні високої точності. 

При використанні «максимального» ряду (1 Гбіт/с – 400 Гбіт/с) спостерігається явна 

перевага нейронної мережі Python (точність прогнозів зменшується до 98-99%) над ней-

ронною мережею MATLAB (точність прогнозів до 90%) – це також підкреслюється 
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тим, що нейронна мережа Python залишається у зоні високої точності, а нейронна ме-

режа MATLAB за деякими комбінаціями працює у зоні допустимих відхилень. Най-

гірша ситуація спостерігається при використання «повного» ряду пропускних здатно-

стей, коли точність прогнозів падає до 72-84%. Це відбувається тому, що нейронна ме-

режа Python за деякими комбінаціями працює у зонах допустимих відхилень та неви-

значеності, а нейронна мережа MATLAB – за однією найменш ймовірною комбіна-

цією взагалі у критичній зоні, тобто, мережа не справляється з цією комбінацією.  
Результати, що відображають точність пошуку вектора шляху регресійними мо-

делями, наведені у табл. 1, за якою чітко видно перевагу нейронної мережі Python над 

нейронною мережею MATLAB. 

 
Таблиця 1. Результати моделювання регресії  (точність пошуку вектору шляху) 

Вхідні дані  

(ПЗ каналів) 

Нейронна мережа 

MATLAB 
Python  

TensorFlow 

Python 

PyTorch 

10 Мбіт/с – 400 Гбіт/с 72,6% -75,5% 79,7%-81,9% 79,3%-83,8% 

1 Гбіт/с – 400 Гбіт/с 88,4% -89,2% 97,4%-99,2% 98%-98,6% 

1 Гбіт/с – 100 Гбіт/с 98,7%-99,5% 100% 100% 

 

Тестування класифікаційної моделі нейронної мережі при розв’язанні                   

задачі маршрутизації за метрикою OSPF 

 

На рис. 11 – рис. 16 наведено діаграми за результатами тестування класифікацій-

ної моделі нейронної мережі при розв’язанні задачі маршрутизації за метрикою OSPF 

з використанням трьох варіантів вхідних даних: точність класифікації та ймовірність 

помилки по класах. На відміну від моделі регресії, де мережа вгадувала та округляла 

числа, у моделі класифікації мережа обирає конкретний тип (номер) шляху. Теорети-

чно, це фундаментальна зміна, яка значно краще підходить для завдань маршрутиза-

ції, тому що класифікатор завжди обирає дискретні рішення із скінченного набору 

варіантів (топологій). Вихідний шар softmax (рис. 4 б) перетворює виходи в імовірно-

сті, що дозволяє відсікати сумнівні рішення. Замість того, щоб мінімізувати відстань 

(MSE – середній квадрат різниці), як у моделі регресії, мережа максимізує ймовірність 

правильного вибору, що виглядає логічніше для маршрутизації. Діаграма «Точність 

класифікації по класах» (рис. 11 – рис. 13) показує, наскільки точно нейронна мережа 

ідентифікує кожен конкретний сценарій маршрутизації (топологію) залежно від вхі-

дних параметрів мережі. Вона дозволяє визначити, які саме комбінації каналів модель 

вивчила досконало, а які викликають у неї труднощі через схожість вхідних даних або 

через недостатню кількість прикладів у навчальній вибірці.  
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Шляхи (класи)  
а) нейромережа MATLAB         

                                                               

Шляхи (класи)  
б) нейромережа Python  

 

Рис. 11. Точність класифікації по класах класифікаційної моделі (10 Мбіт/с – 400 Гбіт/с) 
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Шляхи (класи)  
а) нейромережа MATLAB 

 

Шляхи (класи)  
б) нейромережа Python 

 
Рис. 12. Точність класифікації по класах класифікаційної моделі (1 Гбіт/с – 400 Гбіт/с) 
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Шляхи (класи)  
а) нейромережа MATLAB 

 

Шляхи (класи)  
б) нейромережа Python 

 
Рис. 13. Точність класифікації по класах класифікаційної моделі (1 Гбіт/с – 100 Гбіт/с) 

 

 

Діаграма «Ймовірність помилки» (рис. 14 – рис. 16) по суті є оберненою до діаграми то-

чності та показує ймовірність, з якою мережа обрала інший (неправильний) шлях. 
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Шляхи (класи)  
а) нейромережа MATLAB 

 

Шляхи (класи)  
б) нейромережа Python 

 

Рис. 14. Ймовірність помилки по класах класифікаційної моделі (10 Мбіт/с – 400 Гбіт/с) 
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Шляхи (класи)   
а) нейромережа MATLAB 

 

Шляхи (класи)   
б) нейромережа Python 

 

Рис. 15. Ймовірність помилки по класах класифікаційної моделі (1 Гбіт/с – 400 Гбіт/с) 
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Шляхи (класи)  
а) нейромережа MATLAB 

 

Шляхи (класи)  
б) нейромережа Python 

 

Рис. 16. Ймовірність помилки по класах класифікаційної моделі (1 Гбіт/с – 100 Гбіт/с) 

 

Як видно з рис. 11 – рис. 16, класифікаційна модель показує дещо більш високу 

точність розв’язання задачі одношляхової маршрутизації, ніж регресійна модель, але 

все ж таки зберігаються ті ж самі залежності результатів від рівномірності комбінацій 

вхідних даних та від набору навчальних та тестових даних (ряду ПЗ каналів зв’язку). 

До того ж видно більш ефективну роботу нейронної мережі Python (незалежно від за-

стосованих бібліотек). На рис. 17 наведені матриці невідповідностей (Confusion 

Matrix), що є ключовим інструментом для оцінки якості моделі класифікації маршру-

тів. Матриця показує, наскільки часто модель прогнозує правильний клас (шлях) і де 

саме вона припускається помилок. Так, головна діагональ (зліва направо) – це кіль-

кість правильних передбачень для класів 1, 2 та 3 відповідно (прикладів класу 0 немає).  
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 а) 1 Гбіт/с – 400 Гбіт/с                               б) 10 Мбіт/с – 400 Гбіт/с 

Рис. 17. Матриці невідповідностей класифікаційної моделі нейромережі Python 

 

Чим вищі ці значення і чим темніший колір клітинок, тим краще працює мо-

дель. З рис. 17 а (ПЗ каналів 1 Гбіт/с – 400 Гбіт/с) можна зробити висновок, що клас 2 

найкраще прогнозується, тому що має найбільшу кількість правильних прогнозів 

(644) та найтемніший колір – модель дуже добре розпізнає цей сценарій. Клас 1 також 

демонструє високу точність (279), але має "плутанину" з класом 2 (8). Клас 3 – найменш 

чисельний клас у вибірці (всього 56 прикладів: 51 + 4 + 1), але попри малу кількість, 

точність досить висока ( 91%). Помилки (елементи поза головної діагоналі) показу-

ють, які класи є "схожими" з точки зору нейромережі: 

− клас 1 та клас 2: 8 разів модель помилково обрала клас 2 замість класу 1 та 

11 разів модель обрала клас 1 замість класу 2 – ці два маршрути мають дуже схожі 

вхідні параметри (пропускну здатність каналів), що змусило модель коливатися між 

ними. 

− клас 2 та клас 3: 2 рази модель сплутала клас 2 з класом 3 та 4 рази – клас 3 з 

класом 2. 

− клас 3 та клас 1: лише 1 випадок помилки, що означає, що ці маршрути ма-

ють суттєві відмінності і мережа їх майже не плутає. 

Оскільки загальна кількість тестів 1000, а кількість правильних прогнозів 974, то 

загальна точність склала 97,4%, тобто модель демонструє високу ефективність, але іс-

нує дисбаланс класів, що змушує модель обирати клас 2 у сумнівних ситуаціях. 

З рис. 17 б (ПЗ каналів 10 Мбіт/с – 400 Гбіт/с) видно, що цей варіант моделі демон-

струє значно вищий рівень «плутанини» між класами. Хоча модель все ще зберігає 

працездатність, її надійність помітно знизилася (точність 81,7%). 

Щоб уникнути дисбалансу класів було проведено навчання нейронної мережі 

класифікаційної моделі збалансованими даними. Це відбувалося доповненням трену-

вальних даних найменш ймовірних комбінацій дублями – oversampling та з викорис-
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танням аналізу ваги (частоти появи) комбінації – під час навчання loss-функція масш-

табується за вагами класів, тобто рідкісні класи мають більшу вагу у втраті, щоб ме-

режа "звертала більше уваги" на них. 

На рис. 18 – рис. 20  наведено діаграми ймовірності помилки по класах за резуль-

татами тестування класифікаційної моделі нейронної мережі при виконанні задачі 

маршрутизації за метрикою OSPF з використанням трьох варіантів збалансованих вхі-

дних даних. Але, як можна побачити з рис. 18 – рис. 20, хоча точність прогнозу най-

більш рідкісних комбінації зросла (ймовірність помилок знизилася), загальна точність 

значно погіршилася.  

Це можна пояснити тим, що навчали модель на збалансованих даних, але тесту-

вали її на незбалансованих (природних) даних. У результаті це призвело до розриву 

між тим, що модель очікує, і тим, що вона бачить. Оригінальні незбалансовані дані 

містили інформацію про частоту появи комбінацій і ця частота є важливою ознакою, 

яку модель використовує підсвідомо (якщо вона знає, що комбінація з'являється у 

80 % випадків, це допомагає їй у прогнозуванні), тобто при тренуванні балансованими 

даними втрачається найважливіша статистична інформація: пріоритетність доміную-

чого класу, що змушує модель ігнорувати реальну ймовірність класів. 

Результати, що відображають точність пошуку шляху класифікаційними моде-

лями, наведені у табл. 2, з якою чітко видно перевагу нейронної мережі Python над 

нейронною мережею MATLAB та погіршення точності прогнозування при викорис-

танні при навчанні збалансованих вхідних даних. 

 

Шляхи (класи)  
Рис. 18. Ймовірність помилки по класах класифікаційної моделі (10 Мбіт/с – 400 Гбіт/с) 

нейромережі Python із збалансованими вхідними даними 
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Шляхи (класи)  
Рис. 19. Ймовірність помилки по класах класифікаційної моделі (1 Гбіт/с – 400 Гбіт/с)  

нейромережі Python із збалансованими вхідними даними  

 

Шляхи (класи)  
Рис. 20. Ймовірність помилки по класах класифікаційної моделі (1 Гбіт/с – 100 Гбіт/с)  

нейромережі Python із збалансованими вхідними даними 

 

Таблиця 2. Результати моделювання класифікації (точність пошуку номеру шляху) 

Вихідні дані  

(ПЗ каналів) 

Нейронна мережа 

MATLAB 

MATLAB  

збалансовані 

дані 

Python 

PyTorch 

Python 

TensorFlow 

Python  

TensorFlow з 

вагами класів 

10 Мбіт/с – 400 Гбіт/с 76,9%-78,2% 66,1%-69,5% 81,9%-83,5% 81%-83,4% 75,9%-78,4% 

1 Гбіт/с – 400 Гбіт/с 89,9%-93,1% 84,9%-92,0% 92,5%-98,7% 96,7%-99% 96%-99% 

1 Гбіт/с – 100 Гбіт/с 99,3%-100% 99,7%-100% 100% 100% 100% 
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Для підвищення надійності (точності прогнозування) класифікаційної моделі 

нейронної мережі було ускладнено її структуру (рис. 21). Як видно з рис. 21, до струк-

тури нейронної мережі було додано перший шар зі 128 нейронами та додано метод 

регуляризації Dropout, який запобігає перенавчанню моделі, що потенційно повинно 

було підвищити стабільність та точність прогнозування. Але, як показали подальші 

експерименти з «найгіршим» варіантом вхідних даних (ПЗ каналів 10 Мбіт/с – 400 Гбіт/с), 

ускладнення структури мережі не призвело до підвищення точності. Це можна пояс-

нити тим, що модель MLP вичерпала статистичний ресурс аналізу вхідних даних (6 

параметрів) без урахування топології мережі.  

 

 

Рис. 21. Структура ускладненої нейронної мережі моделі класифікації 

 

Для підвищення точності прогнозування потрібно або додаткові вхідні параме-

три, або перейти до використання графової нейронної мережі GNN. 
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Висновки 

Як показав проведений аналіз, застосування технологій штучних нейронних ме-

реж дає змогу перетворити OSPF із пасивного протоколу на активну систему управ-

ління трафіком. Архітектура багатошарового персептрона і надалі виступає фундаме-

нтальним та перевіреним засобом прогнозування затримок і оптимізації вартості ма-

ршрутів завдяки простоті реалізації та високій точності. Паралельно, поява графових 

нейронних мереж відкриває перспективи побудови універсальних моделей маршру-

тизації, здатних оперативно узагальнювати знання для нових, раніше невідомих топо-

логій, що має вирішальне значення для розвитку інфраструктури 5G та IoT. 

Експерименти проведені на мережній топології (рис. 1), яка включала п’ять вуз-

лів та шість каналів зв’язку, що створювали три шляхи між вузлом-відправником па-

кетів (вузол 1) та вузлом-одержувачем (вузол 5). Розглядалося три варіанти вихідних 

даних щодо топології мережі (стандартних пропускних здатностей каналів зв’язку) та 

дві моделі (регресійна та класифікаційна) нейронної мережі, які впливали на точність 

вибору (прогнозування) оптимального шляху за метрикою OSPF. 

Результати експериментального дослідження підтвердили ефективність інтелек-

туальної моделі одношляхової маршрутизації на основі метрик OSPF. Показано, що 

точність прогнозування нейронної мережі MLP залежить від того, наскільки сильно 

відрізняються між собою пропускні здатності каналів зв’язку. Найкращий результат 

пошуку вектору шляху регресійною моделлю (99% - 100%) досягається при  «оптима-

льному» ряді пропускних здатностей, що відрізняються не більш, ніж на два порядки  

(1 Гбіт/с – 100 Гбіт/с), найгірший (73% – 84%) – при «повному» ряді пропускних здат-

ностей (10 Мбіт/с – 400 Гбіт/с). Класифікаційна модель нейронної мережі загалом по-

казала більш високі результати пошуку шляху, але зберігається залежність точності 

пошуку шляху від розбіжності навчальних даних.  

Продемонстровано залежність точності прогнозування шляху від рівномірності 

варіантів рішень у навчальних даних. Тренування нейронної мережі нерівномірним 

набором навчальних даних (дисбаланс даних) призводить до зміщення моделі в бік 

домінуючих варіантів, коли спостерігається висока ймовірність помилки прогнозу 

для рідкісних комбінацій. Це особливо помітно при великій розбіжності у вихідних 

даних. 

Перевірено навчання класифікаційної моделі нейронної мережі збалансованими 

даними. Проте, як можна побачити з результатів (табл. 2) та діаграм ймовірності поми-

лок (рис. 18 – рис. 20 ), хоча точність найбільш рідкісних комбінації зросла, загальна то-

чність значно погіршилася за рахунок падіння точності домінуючих комбінацій, що ви-

звано втратою інформації про частоту появи комбінацій. Тобто, при тренуванні збала-

нсованими даними втрачається найважливіша статистична інформація: пріоритетність 

домінуючого класу, що змушує модель ігнорувати реальну ймовірність класів. 

Визначено, що використання нейронних мереж Python для задач одношляхової 

маршрутизації дає на 5% – 10% кращий результат точності прогнозування, ніж 
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MATLAB. Це можна пояснити тим, що нейронні мережі Python спеціалізовані для за-

дач мережної маршрутизації, а нейронні мережі MATLAB більш універсальні для ви-

рішення багатьох задач. 

З’ясовано, що ускладнення структури нейронної мережі MLP не призводить до 

покращення точності прогнозування шляху при одношляховій маршрутизації, тому 

що модель MLP досягає межі вичерпання статистичного ресурсу аналізу вхідних да-

них без урахування топології мережі. Для подолання цієї межі точності потрібно або 

залучати додаткові вхідні параметри, що містять інформацію про завантаженість су-

сідніх вузлів, або виконати перехід до використання графової нейронної мережі GNN, 

оскільки на відміну від MLP, графова мережа використовує матрицю суміжності як 

структурний фільтр, що дозволяє моделі «розуміти», як потоки в одному каналі фізи-

чно впливають на сусідні канали. Використання GNN дозволить моделі вивчити фізи-

чні закони розподілу трафіку (наприклад, закон збереження потоку у вузлах), що є 

ключовим фактором для досягнення точності пошуку шляху.  

Незважаючи на виявлену «межу» точності, завдяки низькій обчислювальній 

складності MLP залишається актуальною архітектурою для локальних рішень, вбудо-

ваних систем та маршрутизаторів з обмеженими ресурсами, де критичною є швид-

кість прийняття рішення (мікросекунди). MLP ефективно показала себе як швидка за-

міна лінійного програмування у невеликих сегментах мережі з фіксованою структу-

рою з невеликою розбіжністю параметрів каналів зв’язку. Проте GNN наразі вважа-

ється найбільш перспективним напрямком у телекомунікаціях через свою "графову 

природу", яка ідентична структурі мереж [2, 7, 12]. 
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